Машина для резки полиэтиленовой плёнки

Простая структурная схема установки, когда сервопривод обеспечивает в каждом цикле резки перемещение на позицию резки при вертикально перемещающемся резаке плёнки. Сначала оператором в панели оператора вводится необходимая длина отрезка, затем контроллер рассчитывает требуемое число импульсов. Число определяется не только передаточным числом редуктора, но и зависит от диаметра рулона, то есть необходимо провести некоторые арифметические действия. Подающая система содержит качающийся рычаг для определения угла натяжения, величина которого током 4~20мА поступает для подстройки скорости протяжки в преобразователь. Это служит не для контроля натяжения, а для устранения колебаний при работе сервопривода.

Конфигурация

Особенности применения

Данная система не требует специального освоения, просто программируются все функции, которые нужны потребителю. Используя изделия Дельты, можно недорого и эффективно решить такую задачу.

Необходимые программные и аппаратные компоненты

	Тип	Характеристики
Контроллер	32EH00T	Для управления сервоприводом используется транзисторный выход (до 200кГц)
Панель оператора	TP04	Выбрана эта панель, так как операторы предпочитают традиционные кнопки.
Сервопривод	ASDA-3KW	1-00 = 2 (Импульс + направление)
		1-01 = 00 (Pt-режим)
		2-10 = 1 (Включение сервопривода при включении питания)
		2-15 = 122 (Ограничение движения при реверсе)
		2-16 = 123 (Ограничение прямого движения)
		2-17 = 121 (Аварийный останов)
		2- 32 = 4 (Непрерывная автонастройка - PDFF)
Частотный преобразователь	VFD-M	Pr 00 = 2 (Задатчик частоты 4~20mA)

Схема соединений

Вал установлен без защиты и вращается только в одном направлении, поэтому кабель управления использует 24В DC, и импульсных сигналов с выходов контроллера для управления будет достаточно.

(SERVO side)	
PIN-17 (VDD)PIN-11(COM+)	
PIN-35 (Pull-Hi)	(PLC side)
PIN-45 (COM-)	C0
PIN-41 (PULSE)	-Y0

PULL HI (35)

PULSE (41)

Connect to PL C V0

Connect to DLC C0

Схема входных цепей

Программирование и описание работы

Кнопки управления и индикаторы:

1) Кнопка одного цикла резки

Однократное нажатие приводит к одному циклу резки и возврату ножа в исходное состояние.

2) Управление перемещением ножа

При нажатии кнопки начинается медленное движение ножа, которое продолжается до отпускания кнопки.

3) Кнопка перемещения материала на один шаг резки

При однократном нажатии кнопки происходит перемещение материала на заданное расстояние (один шаг).

4) Управление перемещением плёнки

При нажатии кнопки происходит медленное перемещение материала, которое продолжается до отпускания кнопки.

5) Кнопка дискретного увеличения/уменьшения скорости движения

Каждое нажатие увеличивающей/уменьшающей кнопки изменяет скорость движения на 5м/мин в диапазоне 5...50м/мин.

6) Индикаторы сигнализации давления воздуха/масла.

Система пневмопривода ножа, система смазки ножа.

Параметры процесса, задаваемые с панели оператора: всего две страницы для ввода

$$F0>$$
 Distance setting 200.0
 $F1>$ Distance offset -0.3
 $F2>$ Speed 5
Quantity 32 $F4>$ Clear

F0> Quantity setting 100
F1> Alarm number 3
F2> Quantity offset 2 2
Quantity 32 F4> Clear

- 1) Distance setting: Задание длины подачи, (mm)
- 2) Distance offset: Коррекция измерителя длины. Для компенсации погрешности измерителя вводится поправка которая при расчёте перемещения учитывается
- 3) Speed: Дискретность задания скорости (диапазон 1~10), соответствует скоростям 5m/min. ~ 50m/min
- 4) Quantity: Текущее количество изделий
- 5) Clear: сброс текущего числа
- 6) Quantity setting: Заданное число изделий
- 7) Alarm number: Диапазон сигнализации. Если задано 100 изделий, и диапазон сигнализации -3, то при достижении 97изделий зуммер начнёт предупреждать оператора
- 8) Quantity offset: Для компенсации количества бракованных изделий оператор может ввести поправку на количество циклов резки.

Расчёт перемещения:

Так как валы имеют значительный вес, то для передачи вращения от мотора к валу применяют понижающий редуктор для увеличения момента. Для вала диаметром 90мм, как показано на рисунке, применен редуктор с редукцией 4:1. Мы знаем, что наш сервопривод имеет разрешение 10 000 импульсов, поэтому можно рассчитать необходимое число импульсов для резки необходимого размера плёнки и необходимую частоту привода для обеспечения требуемой производительности резки.

- 1) По расчетной формуле, длина окружности вала определяется как **диаметр** х **π**, то есть **90** π примерно равно 282мм.
- 2) Так как мотор за один оборот даёт 10000 импульсов, то при редукции 4:1 одному обороту вала (с длиной окружности 282 мм) будет соответствовать (40 000 импульсов).
- 3) Перемещению плёнки на 1000мм будет соответствовать 1000/282 x 40,000=141843 импульсов.
- 4) Для точных расчётов используется формула: **1000 х 40,000/90/π** =1,000*4,000/9/ π =141471 импульсов / м.
- 5) При проведении вычислений в контроллере, сначала необходимо провести операции умножения, а потом деления.
- 6) Так как π имеет бесконечное число знаков после запятой, то мы можем использовать в

контроллере для вычислений специальный регистр D (D1018).

Программа для контроллера:

Расчётная формула

1,000 х 40,000/90/ π (импульсов/1000мм)

- = требуемая длина(mm) x 40,000/90/ π
- = требуемая длина(mm) x 4,000/9/ π

Расчёт скорости протяжки:

Если имеется 10000 импульсов на оборот, мотор делает один оборот в секунду, 60 оборотов в минуту. С учетом редуктора, скорость вала составляет 60/4=15 оборотов в минуту.

Следовательно, расчётная формула:

15(circles)*90* π = **4241**mm, το есть 4,241m/mumm.

Для скорости протяжки 10 м/мин формула расчёта

 $10/4.241*10000 = 10*10000*1000/15/90/\pi = 23,578Hz$.

